
VEST: An Aspect-Based Composition Tool for Real-Time Systems
*

John A. Stankovic Ruiqing Zhu Ram Poornalingam Chenyang Lu

Zhendong Yu Marty Humphrey Brian Ellis

 Abstract

Building distributed embedded systems from scratch is
not cost-effective. Instead, designing and building these

systems by using domain specific components has

promise. However, in using components, the most

difficult issues are ensuring that hidden dependencies

won't cause failures and that non-functional properties

such as real-time performance are being met. We have
built the VEST toolkit whose aim is to provide a rich set

of dependency checks based on the concept of aspects to

support distributed embedded system development via

components. We describe the toolkit and its novelty. We

also use VEST on two case studies of a CORBA-based

middleware for avionics. Data collected shows that
VEST can significantly reduce the time it takes to build

a distributed real-time embedded system by over 50%.

Key “lessons learned” from our experience with using

VEST on these case studies are also highlighted.

1. Introduction

Building distributed embedded system software is time-

consuming and costly. The use of software components

for constructing and tailoring these systems has promise.

What are needed are tools to support program

composition and analysis of component-based embedded

systems. In these systems designs are instantiated largely

by choosing pre-written components from libraries

rather than by implementing the design from scratch.

One major difficulty of embedded system composition is

the crosscutting dependencies among components that

* Stankovic, Zhu, Poornalingam, Yu, and Humphrey are with

Department of Computer Science, University of Virginia,
Charlottesville, VA 22903. Lu is with Department of Computer

Science and Engineering, Washington University in St Louis, St Louis,

MO 63130. Ellis is with the Boeing Company. E-mail of Stankovic
(corresponding author): stankovic@cs.virginia.edu. This work was

supported, in part, by the DARPA PCES program under grant F33615-

00-C-3048 and by Microsoft Research.

are often hidden from the composers. Composition tools

should support dependency checks across components

boundaries and expose potential composition errors due

to the crosscutting dependencies.

Our work focuses on the development of effective

composition mechanisms, and the associated

dependency and nonfunctional analyses for real-time

embedded systems. Our solution is based on extending

the notion of aspects. Aspects [10] are defined as those

issues that cannot be cleanly encapsulated in a

generalized procedure. They usually include issues that

affect the performance or semantics of components. This

includes many real-time, concurrency, synchronization,

and reliability issues. Aspects, to date, have largely been

language dependent in that aspects are implemented as

language constructs. A major contribution of our work is

that we extend the concept of aspects to language

independent notions and apply them at design time. We

identify two types of language-independent aspects

referred to as aspect checks and prescriptive aspects.

Together these permit the benefits of aspects to be

exercised early in the composition process rather than in

the implementation phase. Our solutions are embodied

within a toolkit called VEST (Virginia Embedded

Systems Toolkit). VEST itself is not a complete

requirements, design and implementation tool; rather it

currently focuses on the specific composition and

analysis tasks.

2. Overview of VEST

VEST provides an environment for constructing and

analyzing component-based distributed real-time

embedded systems. VEST helps developers select or

create passive software components, compose them into

a product, map the passive components onto active

structures such as threads, map threads onto specific

hardware, and perform dependency checks and non-

functional analyses to offer as many guarantees as

possible along many dimensions including real-time

performance and reliability. Distributed embedded

systems issues are explicitly addressed via the mapping

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2003 2. REPORT TYPE

3. DATES COVERED
 00-00-2003 to 00-00-2003

4. TITLE AND SUBTITLE
VEST: An Aspect-Based Composition Tool for Real-Time Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Virginia,Department of Computer Science,151 Engineer’s
Way,Cahrlottesville,VA,22094-4740

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

12

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

of components to active threads and to hardware, the

ability to include middleware as components, and the

specification of a network and distributed nodes.

The VEST environment is composed of five libraries, a

set of aspect checks, and a GUI-based environment for

composing and analyzing embedded products.

• 4 Component Libraries: Because VEST supports

real-time distributed embedded systems, the VEST

component libraries contain both software and

descriptions of hardware components and networks.

VEST components can be abstract or actual. An

abstract component is a design entity that represents

the requirements, e.g., a timer with certain

requirements or a generic processor is an abstract

component. An actual component is the

implementation or description of a reusable entity.

A specific timer module written in C and a Motorola

MPC7455 are examples of actual components. Sets

of reflective information exist for each of these

component types. The reflective information of an

abstract component includes its interface and

requirements such as for security. The reflective

information for actual components includes

categories such as linking information, location of

source code, worst-case execution time, memory

footprint, and other reflective information needed to

analyze crosscutting dependencies. The extent of the

reflective information and its extensibility are some

of the key features that distinguish VEST from

many other tools. To support the whole design

process of embedded systems, VEST implements

four component libraries: the application library,

middleware library, OS library and a hardware

library.

• Prescriptive Aspects Library: Prescriptive aspects

are reusable programming language independent

advice that may be applied to a design. For example,

a developer can invoke a set of prescriptive aspects

in the library to add a certain security mechanism en

masse to an avionics product.

• Aspect Checks: VEST implements both a set of

simple intra- and inter-component aspect checks that

crosscut component boundaries. A developer can

apply these checks to a system design to discover

errors caused by dependencies among components.

One aspect check in VEST is the real-time

schedulability analysis for both single-node and

distributed embedded systems.

• Composition Environment: VEST provides a

GUI-based environment that lets developers

compose distributed embedded systems from

components, perform dependency checks, and

invoke prescriptive aspects on a design. For details

on the GUI see [24].

3. Language Independent Aspects

Aspects [10] are defined as those issues that cannot be

cleanly encapsulated in a generalized procedure. For

example, changing one component may affect the end-

to-end response time of many components that are

working together. Security aspects of a system also

involve multiple correlated components. Aspects, as

defined in the literature, are at the programming

language level. For example, AspectJ [10] provides

syntax that permits the specification of aspects and a

weaver that weaves the code specified in the aspect into

the base Java code. In VEST, we apply the concept of

aspects as crosscutting dependencies at design time. This

results in language independent aspects. We have

discovered that there are, at least, two types of language

independent aspects. The first type we call prescriptive

aspects. In prescriptive aspects, a general set of advice is

programmed and retained in the prescriptive aspect

library. This advice can then be applied to the design,

not source code. The application of this advice changes

the reflective information associated with the affected

components and their interactions (section 3.1). The

second type of aspect we call aspect checks. Aspect

checks look for specific crosscutting dependencies,

which are often hidden from developers (sections 3.2

and 4). Language independent aspects help developers

handle crosscutting dependencies among components at

the design stage. Compared with aspect oriented

languages, language independent aspects reduce errors in

the early stages of software design lifecycles, which lead

to shorter time to market. Language independent aspects

can achieve the benefit of aspects in embedded systems

even when general purpose languages (e.g., C++, C, and

Java) are used for implementation.

3.1. Prescriptive Aspects

Prescriptive aspects are advice that may be applied to a

design. The advice is written in a simple VEST

Prescriptive Aspect Language (VPAL). Prescriptive

aspects are independent of programming languages

because they apply to the system design, and the

resultant new design can be implemented in any

programming language. To change the system design,

prescriptive aspects can adjust properties in the reflective

information (e.g., change the priorities of a task or the

replication levels of a software component). It can also

add/delete components or interactions between

components. An English language description may also

be associated with each aspect. This permits an

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

explanation of why this advice is in the library and how

and when to use it.

Specification and Examples

We have examined specific prescriptive aspects related

to the distributed avionics domain via Boeing’s Bold

Stroke middleware. The following are examples of

prescriptive aspects organized in categories. Each of

these examples only list the (parameterized) advice; they

do not show the accompanying English language

description and constraints. These examples demonstrate

that prescriptive aspects can be a powerful tool in real-

time embedded system design.

1) Security:

a) for all pilot to ground communication encrypt it

with RSA;

b) for all data of type X encrypt with technique Y;

c) for security level of any data of type X change

to Y;

d) move all data with security levels above X to

physical store Y;

2) Persistence:

a) for all log data in the navigation subsystem

make it persistent;

b) for all data of type X make it persistent;

c) for all objects of type X make the save rate Y;

3) Redundancy:

a) make X copies of all data of type Y;

b) update all backups for data X with rate Y;

4) Locking:

a) for data of type X lock all/fields of data;

b) for all data of type X change to spin lock;

5) Events:

a) for threads of priority higher than X modify the

conditions in which to fire events;

b) for all events of a type X make them also wait

for condition Y;

c) for all components that are critical have them

fire a new event called X whenever they

execute;

d) for all components that filter their own events

make a change to remove that filter and use the

event channel filter.

Applying Prescriptive Aspects

The developer can apply a prescriptive aspect to a design

by running a VPAL interpreter on its specification. The

interpreter modifies the reflective information of design

components. Since the code itself would no longer

reflect the new design change, the interpreter marks the

actual source code associated with that change as

"inconsistent and needing changes" to meet the new

design. Currently VEST does not support automatic code

generation/modification, and the developer needs to

implement the code change manually. Once the new

code is created and linked to the component then the

inconsistency indication is removed. Currently, we are

implementing a tool to automatically convert a system

design in VEST to a Bold Stroke configuration

(implementation) through an XML configuration

interface provided by Boeing.

Prescriptive Aspect Library

Prescriptive aspects should be general enough to be used

in different products. VEST supports reusing

prescriptive aspects by organizing them into the

prescriptive aspect library. Prescriptive aspects will not

be permitted into the prescriptive aspect library unless it

meets with the approval of the system administrator. The

requirements include sufficiently general, parameterized,

complete English description, meaningful constraints

specified, and relating to non-functional properties.

In some cases it may be necessary to apply to a design a

set of seemingly “unrelated” aspects in some order. To

support this feature, the developer has the capability to

describe precedence constraints among the aspects. More

importantly, the same mechanisms can be applied to

create a “related” set of changes to effect a global

change to the system. In order to make high level

changes to a design (e.g., in regard to security, fault

tolerance, reliability, performance, etc.) it is usually

necessary to make a set of “related” and more specific

changes. For example, there can be a group of advice in

the prescriptive library that supports a secure avionics

system. This advice may encompass a collection of

changes that includes encrypting certain types of

communication, adding intrusion detection changes,

adding modifications that prevent or minimize denial of

service, etc. The mechanisms in VEST support this type

of design where the root of the hierarchy can imply

changes needed for security, and the rest of the tree

contains the specific modifications required. Future

work will exploit this novel view supported by VEST.

The Value of Prescriptive Aspects

There are many ways in which prescriptive aspects have

shown to be valuable. First, by using prescriptive aspects

a developer is encouraged to design in a functional

manner and then to apply non-functional updates to the

design. This separation of concerns makes design easier.

Second, prescriptive aspects can be thought of as general

advice for changing a design in a global manner. The

advice is domain specific. In this case, a developer can

walk through all the library advice categories and

determine if they are appropriate. For example, after

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

designing a functional avionics product a developer may

browse through prescriptive aspects for security, real-

time performance, fault tolerance, persistence, etc. For

each category they can determine if any of the advice

should be applied. This browsing can aid in producing a

more complete and tailored design and when specific

advice is already in the library it is easy to apply it.

Third, advice can be grouped in such a way to support

implementing a wide reaching concept, such as

improved computer security. Under this general advice

notion there might exist a group of prescriptive changes

that relate to denial of service, encryption, and

authentication. Applying the high level advice, applies

the entire group. Fourth, prescriptive aspects support a

widespread global change in the design by simply

defining new advice or using pre-declared advice and

applying it to your design. This prevents bugs where

changes required are only made in some of the requisite

places. Also implied by this advantage is that re-

applying different advice can be done simply and

dependency checks and schedulability analysis can be

re-run automatically. This facilitates looking at multiple

competing design options and making modifications

easy.

3.2. Aspect Checking

One goal of VEST is to provide support for various

types of dependency checking among components

during the composition process. Dependency checks are

invoked to establish certain properties of the composed

system. This is a critical part of real-time embedded

system design and implementation. Some dependency

checks are simple and have been understood for a long

time. We call these intra- and inter-component

dependency checks. Other dependencies are very

difficult and even insidious. We refer to these as

crosscutting dependencies or aspect checks. Aspect

checking is an explicit check across components that

exist in the current product configuration. We have

identified many aspect checks that would help a

developer avoid difficult to find errors when creating

embedded systems from components. In many cases the

important thing is identifying the check required and

implementing it so that it is automatic. Although the

implementation of some checks may be simple, when

these checks are combined with all the other features of

VEST, the result is a powerful tool. To illustrate these

concepts we discuss one of the most important aspect

checks, end-to-end real-time scheduling, in the next

section.

4. End-to-End RT Scheduling Aspect

An important check for real-time embedded systems is

the schedulability analysis that validates whether all

tasks can make their deadlines. Note that while

designing and implementing a system that most changes

made will affect the real-time properties of the system.

This makes real-time scheduling a global cross cutting

dependency. While many different schedulability

analysis techniques exist [1, 2, 4, 9, 11, 16, 26], they

differ in their assumptions on the task set and none of

the existing analysis is applicable to all real-time

embedded systems. The compatibility between

schedulability analyses and the characteristics of the

designed system is a typical crosscutting dependency

that is “hidden” from the designer. Using an

incompatible analysis on a system can lead to timing

violations even when the schedulability analysis itself is

correct. To handle different types of embedded systems,

VEST provides a flexible scheduling tool that provides

aspect checks on the compatibility between existing

schedulability analyses and the system. This tool is

composed of a set of schedulability analysis routines, an

assumption table, and a reflective information collector.

The assumption table lists the assumptions of each

schedulability analysis routine. The current list of

assumptions includes the applicability of various

scheduling analysis with respect to periodicity,

distribution, importance, blocking and precedence

constraints. For example, the assumptions of the Rate

Monotonic analysis are that all tasks are periodic. The

Rate Monotonic with Priority Ceiling protocol’s

assumptions are (periodic, blocking). The VEST

scheduling tool is extensible and new scheduling

techniques can be added to the tool together with their

assumptions.

Developers can assess the schedulability of the current

design by running the scheduling tool from the GUI. The

reflective information collector scans the software,

hardware and network components of the design and

produces a platform/task set information file that

includes a list of the characteristics and the timing

information of the task set. The tool selects an analysis

whose assumptions match the characteristics of the

system. This ensures that proper analysis and scheduling

policy is applied. For example, for a system with all

independent periodic tasks on a single processor, the

Rate Monotonic check or MUF will be applied to the

system. However, if the same task set is designed on a

distributed platform, the DM/Offset analysis described

below will be applied.

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

4.1. Deadline Monotonic with Phase Offset

Currently the VEST scheduling tool implements the

basic Rate Monotonic check, the Maximum Urgency

First algorithm [4], and a more sophisticated end-to-end

analysis for distributed systems. In applying the tool to a

Boeing’s distributed avionics case study we found that

RMA and MUF were not sufficient because such

systems often run on a distributed platform. Avionics

based on real-time CORBA (e.g., Bold Stroke and TAO)

[6, 15, 22] requires support for the following distributed

scheduling problem.

A periodic task Ti consists of multiple subtasks {Tij} on

different processors. The set of subtasks have the same

period Pi, and the task deadline Di = Pi. Figure 1 shows a

task T1 having three subtasks connected by arrows

(consider these T11, T12 T13 not labeled in the figure).

After completion of the first subtask T11, an event is

pushed to the second subtask T12, and similarly for the

third subtask T13. The set of three subtasks of T1 has a

single deadline and period P1=D1. In this example, this

task T1 is physically placed on three distinct processors

connected via a bus or a LAN. This example explains a

single task. The system is then composed of multiple

such tasks, each task Ti composed of one or more

subtasks placed on one or more physical processors, and

with communications proceeding in possibly “different”

directions among the processors.

Distributed Task - conceptual Period=P1

T1

Actual Distributed Scheduling Problem

Proc 1

Proc 2

Proc 3

D11 Phase Offset

D11 where D11 < P1 => DM

= Communication delay
D12 Phase Offset D13

T11

T12

T13

Distributed Task - conceptual Period=P1

T1

Actual Distributed Scheduling Problem

Proc 1

Proc 2

Proc 3

D11 Phase Offset

D11 where D11 < P1 => DM

= Communication delay
D12 Phase Offset D13

T11

T12

T13

Figure 1. Schedulability Analysis for Deadline

Monotonic with Phase Offset

This distributed scheduling problem can be modeled as

an end-to-end scheduling problem. To provide

scheduling support for the above distributed scheduling

problem, VEST implements a scheduling analysis that

we call Deadline Monotonic with phase Offset

(DM/Offset). The assumptions of DM/Offset are

(periodic, distributed).

If the design matches the its assumptions, DM/Offset

assigns intermediate deadlines {Dij} (e.g., D11, D12 and

D13 in Figure 1) for the subtasks {Tij} of each task Ti,

and accounts for the worst-case network delay tc. The

first subtask Ti1 has a start time at the beginning of its

period and a deadline less than its period; the subsequent

subtask have a static phased offset equal to the deadline

of its previous component plus tc. (The static offset

requires delaying the release of a subtask Tij if its

predecessor Tij-1 finishes earlier than its deadline.) The

deadline of the last subtask equals the deadline of the

whole task. If every subtask Tij meets its intermediate

deadline, the whole task meets its deadline Di.

Consequently, the distributed schedulability analysis is

reduced to the analysis of each node independently with

phased offset. This phase offset policy is similar to the

Modified Phase Modification Protocol [2] and a protocol

described in [26].

For the schedulability analysis on each node, we employ

Audsley’s priority assignment and analysis algorithm

found in [1]. The Audsley algorithm provides an optimal

priority assignment and feasibility test algorithm for

static priority tasks with arbitrary start times (phase

offsets) on a single node. It is different from Rate

Monotonic and Deadline Monotonic priority assignment

schemes, which assumes that tasks must be released

simultaneously, i.e., without considering the start times

(phase offsets). The current DM/Offset analysis takes a

simple approach that evenly divides the deadline of each

task as the intermediate deadlines of its subtasks.

In our system task and hardware models are

automatically determined by VEST itself. Other tools

such as CAISARTS [8] are not linked to a design and

analysis system, and commercial tools such as TimeWiz

use simulation to analyze most types of distributed real-

time programs.

5. Semantics and Correctness

The VEST tool does not support formal proof of

correctness. Rather, its goal is to apply key checks and

analysis to avoid many common and insidious cross

cutting problems that might otherwise exist. However,

VEST is based on various underlying semantics that

support these various types of checks and analysis.

First, VEST is built with GME [12]. GME has explicit

semantics for components, interfaces, relationships,

dependencies, and constraints. Subsequent analysis and

checks rely on this underlying semantics.

Second, VEST specifically implements the semantics of

the Bold Stroke middleware in regards to tasks and

events. This is the same as the ACE/TAO semantics

[22]. VEST is application domain dependent so

implementing domain specific semantics is necessary.

For example, the current implementation described in

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

this paper focuses on the avionics domain as supported

by Bold Stroke middleware [23]. VEST is also

extensible and can easily implement other semantics

from other application domains.

Third, aspect checks and prescriptive aspects collect data

from the underlying model and apply interpreters to that

data. For example, precise event semantics (of

ACE/TAO) permit VEST to collect all suppliers and

consumers of events and then perform checks such as

determining if any events have no suppliers or

consumers, or determine if cycles exist. Consequently,

the correct implementation of the interpreters rely on the

underlying semantics of GME and Bold Stroke.

Fourth, the VEST semantics for threads, hardware

specification, events, resource assignments, etc. permit

automatic creation of precise system-wide task set and

hardware requirements including real-time requirements.

The associated analysis supplied by VEST uses this

specification and matches it with appropriate scheduling

techniques. This provides correct schedulability analysis.

waypoint :

BM__OpenEDComponent

waypointProxy :

BM__OpenEDComponent

fltPlanDisplay :

BM__DisplayComponent

pilotControl :

BM__PushDataSourceComponentImpl

infrastructure

Represents

line of

distribution

2. SetData()

6. InternalizeState()

7. SetStateUpdated()

1. SetData()

8. Push()

DATA_AVAILABLE9. GetData()

3. SetData()

5. ExternalizeState()

4. Push()

DATA_AVAILABLE

Figure 2. UML Diagram of a Pilot Control
Subsystem

6. Case Study I: Composition and

Analysis Scenario

The purpose of this case study is to demonstrate the

effectiveness of the ideas incorporated in VEST. To do

this we applied VEST to the design and composition of a

portion of a distributed avionics system that is based on

the Bold Stroke middleware. In this avionics system, a

pilot control component measures coordinate data

periodically, then sends its coordinate data to a waypoint

control component. Upon receiving coordinate data, the

waypoint control component calculates a new route for

the plan, updates its database, and sends that new route

to a display component. This avionic control system is a

typical example of a distributed real-time embedded

system with many crosscutting concerns. In fact, this

example scenario is posted by Boeing as a good

scenario for evaluating design and analysis tools. Figure

2 shows the UML diagram of the avionic system’s

software architecture.

To better understand the case study additional details

about the application are provided: The system is

composed of four first level components: pilotControl,

waypointProxy, waypoint, and fltPlanDisplay. They run

on the Bold Stroke middleware. The pilotControl

component is an event supplier. It supplies coordinate

data to the waypointProxy component at a specified

frequency. WaypointProxy is a proxy representing the

waypoint component and it runs on another processor.

Communication is supported by the middleware service

known as an event channel. Via the event channel, data

originating in the pilotControl component is forwarded

to the waypoint component. Likewise, the waypoint

component sends the newly calculated route back to

waypointProxy. Finally, the fltPlanDisplay component

gets the new route information and displays it.

6.1. Design the Pilot Control Subsystem

In this case study, the developer first creates the system

using abstract components. After the abstract

specification has been performed, the system design

might look as shown in Figure 3.

Figure 3. VEST model of a pilot control
system

In the above diagram there are two layers shown. One

layer is the software layer. This layer (see the top panel

of the figure) has basic four components: pilot control,

waypointProxy, waypoint, and fltPlanDisplay. The high-

level interaction of these components are shown by the

dashed lines. By high-level interaction we mean that if

there is any event propagation from one component to

another then these components are connected by an arc.

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

Direction of a connection shows the flow of events. A

second canvas in the picture shows the hardware layer.

In this example, the system is deployed in a distributed

environment. It contains two processors: a pilot

processor and a waypoint processor. They are connected

via a bus interconnect. Also, the system has two non-

volatile memory units and one volatile memory unit.

What are not shown in the diagram are the OS, Aspect,

and middleware layers. The components of these layers

can be viewed from the browser menu shown on the

right-hand side of the figure. In the OS layer, we have

two threads: a Waypoint thread and a PilotControl

thread. The waypoint thread is mapped to the waypoint

processor and the pilot control thread is mapped to the

pilot control processor. The components that run on the

waypoint thread are Pilot Control, WaypointProxy and

fltPlanDisplay.

The persistence service of Bold Stroke is one focus of

this case study. Every application component that needs

to maintain persistent data needs to create a persistence

adapter that set the follow attributes of the persistence

service: save_rate, is_double buffered, and

track_dirtiness. The save rate specifies the frequency of

the persistence thread. Is_double_buffered identifies

whether the state should be saved twice or not.

Track_dirtiness is a boolean variable; if true, this

parameter causes the state to be persistent if the

persistent object is dirty.

Double clicking on the software components shows the

methods and member variables modeled in this

component. An event graph is specified at this view

(VEST models systems at the method level). The

specification of the method-calling graph helps in

completely characterizing the systems execution and

thereby provides needed data for VEST to perform

interface checking and schedulability analysis. After

performing these operations the developer chooses

actual components from the libraries and maps them to

these abstract components. After modeling, the VEST

developer makes various checks to boost his confidence

in the correctness of the system.

6.2. Memory Footprint Check

In this case study, the first checks performed are intra-

component checks. For instance, enough memory is

vital for the system’s performance. A memory footprint

check is available in VEST. The first part of the

memory footprint check is concerned with main

memory. It sums the memory needed by all the

components in the system, and all the available physical

memory (RAM) provided by the hardware, and check if

there is enough physical memory in the system. In the

case study, the developer initially specified the system as

shown in the following table:

Pilot

Control

Waypoint

Proxy

Waypoint fltPlan

Display

max

foot -

print

50M 100M 300M 100M

However, the hardware memory is only of size 500M.

Considering the system overhead, the memory check

informs the developer of insufficient memory. The

developer either adds more memory, or reduces memory

consumption by modifying application components.

The second part of the memory check deals with

NVRAM (e.g., EEPROM). Bold Stroke allows

application programs to specify a set of data in some

components to be persistent, so that important data in the

system survives power failures. For the system to

function correctly, sufficient NVRAM for persistent

components should be provided. Our check assures the

developer when there is enough non-volatile memory to

meet the system’s requirement, or gives warning when

not enough NVRAM is provided. In this case study, the

system has two NVRAMs with a total capacity of 300

MB. The sum of the persistent objects’ size is 200 MB.

The persistent object is originally configured as double-

buffered, which doubles the needed capacity of NVRAM

to 400 MB. When invoked, the memory footprint check

warns that there is insufficient NVRAM. In this case

study, the designer now reconfigures the persistence

adapter to single-buffered mode, and the memory check

returns successful confirmation. While these checks are

trivial, they are useful and demonstrate a simple cross

cutting constraint.

6.3. End-to-End Schedulability Aspect Check

The developer may then proceed to make additional

checks that are more sophisticated. VEST provides an

automatic schedulability analysis. After the designer

completes the design of the model, he runs the

schedulability analysis to check the model. This analysis

requires the DM/Offset analysis because the software

components are mapped to multiple interconnected

processors in the model. However, the output of the

schedulability analysis shows that the model is not

schedulable, as depicted in the following chart. The

output contains a list of methods including the period

and WCET of the methods in the CORBA components.

Based on the event graph, multiple interacting methods

on a same processor are grouped into a subtask, which is

mapped to a thread. The second part of the output is the

subtask list on each processor and its schedulability

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

analysis results. The subtask list includes the period,

WCET, and the intermediate deadline and offset of each

subtask. For the initial design with a period 400 ms, the

analysis shows that processor 2 is schedulable, but

processor 1 is not. Therefore, the design should be

changed.

List of methods

MethodName MeasureLocation Processor

Processor1 Period 400 WCET 67

MethodName Push Processor

Processor1 Period 400 WCET 2

MethodName Push Processor

Processor2 Period 400 WCET 4

... ...

Subtasks on Processor2

Subtask Push Processor 2 Period 400 WCET 4

Deadline 160 Startime 81

Subtask CalculateRoute Processor 2 Period 400

WCET 2 Deadline 320 Startime 241

Priority level 2 has been assigned to Push.

Priority level 1 has been assigned to CalculateRoute.

Schedulability test on Processor2 passed.

Subtasks on Processor1

Subtask MesureLocation+Push+GetData Processor 1

Period 400 WCET 102 Deadline 80 Startime 0

Subtask DataReadyPush+Push+GetData+Display

Processor 1 Period 400 WCET 11 Deadline 240

Startime 161Subtask GetData Processor 1 Period 400

WCET 2 Deadline 400 Startime 321

Couldn’t assign, try next

Priority level 3 has been assigned to

DataReadyPush+Push+GetData+Display.

Couldn’t assign, try next

Priority level 2 has been assigned to GetData.

Couldn’t assign, try next

Schedulability test on Processor1 failed.

Output of the schedulability check on the original

pilot control subsystem with a period of 400 ms

6.4. Prescriptive Aspects

As part of the VEST tool, the designer can use a

prescriptive aspect to change the design. To make the

system schedulable, the developer applies the following

prescriptive aspect to relax the period of each component

from 400 ms to 600 ms.

for *.Period=400

 change *.Period=600

After applying the prescriptive aspect (assuming that this

change is compatible with the semantics of the

application), the designer runs the schedulability

analysis again, which as it turns out succeeds on both

processors this time. The output is not shown due to

space limitations.

As another example, assume that every component has a

notion of importance, whose value is [high, medium,

low]. For the sake of fault tolerance, the developer

would like to double buffer as many important

components as possible. In order to do that, he uses a

prescriptive aspect. The developer drags a prescriptive

aspect into the system.

 for SoftwareComponent.importance=*.[medium,high]

 change PersistanceAdapter.isdoublebuffered=true

Applying the above prescriptive aspect initiates a search

for all software components. In the list of components,

the prescriptive aspect interpreter looks for a property of

type importance. The interpreter then tries to match the

importance attribute of components to either medium or

high, and if there is a success then it changes the

persistent adapter associated with that component’s

property is_double_buffered to true.

Obviously this prescriptive aspect crosscuts multiple

facets of the system. The developer wants to make sure

that this aspect does not violate other specification for

the system. He runs the interpreter to execute the

prescriptive aspect, and the changes are made to related

components. Then he runs the memory footprint check.

It turns out that there are two persistent components of

high importance (each has a size of 50M), and one

persistence component of medium importance (which as

a size of 100M). If all of these are double buffered then

the memory requirements are now 400M. The physical

non-volatile memory in the system is only 300M, so

there is not enough non-persistent memory to meet the

requirement of the prescriptive aspect he enabled. Upon

receiving a warning from VEST concerning the lack of

memory availability, the developer changes the

prescriptive aspect to only double buffer the highly

important components.

 for Software.importance=high

 change PersistanceAdapter.isdoublebuffered=true

The above syntax is similar to the previous one except

that the range of components to change is now narrower,

limiting itself to only high importance components. The

developer then re-executes the prescriptive aspect, and

applies the non-volatile memory check again. The check

passes successfully, since the changes in the software

and middleware layers are in harmony with the hardware

layer of the system.

This case study shows that VEST has many advantages.

First, it provides a way to speed up code-test-debug

cycle through various checks it implements. Second, it

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

makes components more reusable across multiple

projects, because it allows configurablility within

components (at middleware layer and software layer) so

that they are easily reusable, and it provides a library for

a user to navigate and choose components. Third, VEST

also gives users a higher confidence in the correctness of

system operation. Checks such as buffer sizing, memory

sizing, and schedulability analysis reduce a user’s effort

to achieve confidence. Fourth, the use of prescriptive

aspects in a system makes it easy to extend/contract a

system’s capabilities with global wide changes being

performed automatically, avoiding errors of forgetting to

change one or more locations.

7. Case Study II: Measurement of

Composition Time

We performed a second case study to measure the

benefits of VEST in composing distributed avionics

systems. The performance metric is the time it takes to

compose (including design, implementation via

composition, and testing or analysis) an avionics product

scenario to achieve end-to-end distributed real-time

schedulability. This experiment was accomplished in a

very limited situation. One expert from Boeing

performed the experiment using their current approach,

and one grad student performed the experiment using

VEST. For each person we timed the various steps

involved with this experiment. Since this is a single

experiment with many potential issues, the results are

not definitive. However, we believe that the results are

representative and discuss how they might generalize to

a larger experiment.

7.1. Experimental set-up

The experiments used Boeing’s MOBIES OEP2.1

Product Scenario 3.2 (PS 3.2) as a target system to be

composed. The scenario represents that portion of an

avionics system that displays waypoint and radar data

and is published by Boeing as a typical subsystem to

facilitate research that is applicable to real world

problems. The waypoint data can be changed by the pilot

and the radar data is produced at a 5hz rate by the radar

device. The sensor coordinator notifies each logical

sensor of when its data should be updated.

This scenario is initially triggered by an interval timeout

that is consumed by the pilotControl component. Upon

receipt of this event, the pilotControl pushes data to the

waypointProxy via the Set operations in the proxy’s

facet. The waypointProxy then forwards this call via the

Infrastructure component to the waypoint component.

The waypoint then updates its state and issues a Data
Available event. This event causes the Replication

Service to extract the state from the waypoint and send it

to the waypointProxy. The waypointProxy internalizes

this state and issues its own Data Available event. The

proxy’s event is consumed by the fltPlanDisplay

component that gets the data from the proxy and

displays it.

The baseline toolset for comparison includes Rational

Rose [17] and Quantify both of which are currently used

in Boeing’s product development. The UML models of

all Bold Stroke components were available in Rational

Rose before the experiment started. The worst-case

execution times (WCET’s) of all used components were

also available in the library before the experiment

started. An expert at Boeing used the following process

to compose PS 3.2:

1. Design PS 3.2 by integrating the UML models

of existing components in Rational Rose.

2. Implementation: Program the design by

connecting existing Bold Stroke components in

C++ through the Bold Stroke event service.

3. Testing: Run the implemented system to check

for timing violations. If any timing violations

are detected, go back to step 1; Otherwise, the

composition is completed.

At UVA, a graduate student familiar with VEST used

VEST to compose the same product scenario. The VEST

experiment included the following steps:

1. Design PS 3.2 in VEST using component

libraries.

2. Scheduling analysis: Run the VEST scheduling

tool to assess the schedulability of the design

(without implementing the system). If the

analysis shows that the design is not

schedulable, go back to step 1. Otherwise, go to

step 3.

3. Implementation: Program the VEST design.

Both VEST and the baseline experiments included two

iterations of composition. Initially, the system was

designed on a single-processor platform. Since the

single-processor design turned out to be unschedulable, a

new composition was needed. A new processor was

added to the system and a distributed version of PS 3.2

was composed by moving several components to the

new processor. The distributed version was found to be

schedulable. The VEST scheduling tool can

automatically identify the applicable scheduling analysis

that matches the system characteristics. Maximum

Urgency First (MUF) scheduling analysis was

automatically invoked for the single-processor design,

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

and the DM/Offset scheduling analysis was

automatically invoked for the distributed design.

7.2. Experimental Results

Table 1: Measured Time with VEST and
Baseline in Case Study II

VEST Baseline

Step Time
(min)

Step Time
(min)

V.1.

1

Design: single

processor

40 B.1.1 Design: single

processor

25

 B.1.2 Implement:

single
processor

75

V.1.
2

Scheduling analysis:
single processor

1 B.1.3 Test: single
processor

30

V.2.
1

Design: distributed 25 B.2.1 Design:
distributed

90

 B.2.2 Implementation

: distributed

105

V.2.
2

Scheduling analysis:
distributed

1 B.2.3 Test:
distributed

20

Implementation:
distributed

105

Total Composition Time 172 Total Composition Time 345

We measured the total composition time as well as the

time that each step took in both experiments. The results

are summarized in table 1. We used X.i.k to represent the

kth
 step in the ith

 iteration of the X experiment, where

X=V refers to the VEST experiment and X=B refers to

the baseline experiment.

Our measurement showed that VEST effectively reduced

the total composition time of PS 3.2 by 50%. Analyses

on the time spent on each step shows two key

advantages of VEST compared to the baseline:

• Reduce the rounds of implementation:

Scheduling analysis enables VEST to drop

wrong (unschedulable) designs without

implementing the system. In this case study, the

scheduling analysis showed that the single-

processor design was unschedulable. Hence, the

VEST user avoided implementing the single-

processor composition (Step B.1.2) and saved

75 min. Compared to the baseline, this reduced

the total composition time by 22%. Note also

that in VEST the scheduling is a rigorous

analysis and in the standard approach it is only

done via testing which is more error prone.

• Replace time-consuming testing with quicker

analyses: Two schedulability analyses (Steps

V.1.2 and V.2.2) in VEST took a total of only 2

minutes, compared to a total testing time of 50

minutes (Steps B.1.3 and B.2.3) in the baseline

experiment. This saved the VEST user 48 min

and reduced the composition time by 14%

compared to the baseline.

While this case study focused on the scheduling part of

VEST, we should note that both of the above benefits

are also applicable to other aspect checks of VEST.

8. Additional Lessons Learned

One set of lessons learned deals with the modeling

experience. Graphical modeling of complex systems,

while very useful, still results in many human errors. In

general, a model stabilizes only after a number of re-

designs. This includes many changes to high-level model

components as well as fine tuning the properties of the

components. Navigating and applying changes to these

models are increasingly difficult as the models grow

more complex. What is required are active components

that make consistent and global changes. This is one

value to our prescriptive aspects.

We also learned some additional things from the use of

prescriptive aspects. The language that was initially

designed could operate on properties of a set of objects.

This was very useful in applying global and consistent

changes to a class of objects based on types, properties

or value. However, more capabilities are necessary. In

particular, it is necessary to manipulate components

based on their “relationships”. One motivation for this is

that it is sometimes necessary to adjust certain properties

or location of components based on their relationship

with other components. For example, one very practical

use we found was that if a certain set of components

were mapped to a periodic thread we found that

prescriptive aspects based on relationships could

propagate any changes in the period down the calling

chain. This means that the designer only needs to deal

with the thread and not all the components in that task.

We also found that automated dependency checks, even

if simple, are very helpful. For example, making sure

that there is enough memory and that all events have

suppliers and consumers are simple, but necessary

checks.

Another set of lessons involve the schedulability

framework. The schedulability framework in VEST is

not meant to implement a novel schedulability analysis,

but rather to ensure that the proper analysis is used and

to automatically identify the task model from the system

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

description. These features improve accuracy and reduce

design time. In fact, we have found that it is possible to

automate the many of the time consuming steps

including many parts of the schedulability analysis and

just as importantly re-analysis. For example, it is often

necessary to re-design when one processor does not have

sufficient capacity to meet deadlines. This requires new

analysis and distributed task allocation. New analysis

often requires a new algorithm as well because many of

the uni-processor algorithms don’t work for distributed

systems. We also found that while there are a good

number of solutions for distributed real-time scheduling,

they are often (i) not supported in a tool, (ii) are not

known by designers, and (iii) do not meet the

requirements of the specific distributed programs

actually being run. We also found that in some tools the

task set characteristics are input directly, i.e., separately

from the program design. Again, deriving the task set

characteristics automatically, as in VEST, saves time and

is more accurate.

Finally, it is obvious that designers of embedded real-

time systems face many difficult problems. By working

through various product scenarios with avionics

designers we were able to identify the actual time it

takes to perform various steps in the design process (for

simple designs) so we can concentrate on automating the

most time consuming parts [19]. In this paper we have

shown that in one case study using VEST the designer

saved over 50% of the time to design a system due to

automation. We have also added an automatic task

allocation module to automate another part of the re-

analysis. The designers now saved over 67% of their

time (this data was not reported in this paper due to

space limitations).

9. State of the Art

The work described in this paper builds upon and

integrates research from three main areas: component

based design, aspect oriented programming, and design

tools.

The software engineering field has worked on

component based solutions for a long time. Systems

such as CORBA [21], COM [13], and DCOM [14] exist

to facilitate object or component composition. These

systems have many advantages including reusability of

software and higher reliability since the components are

written by domain experts [23]. However, none of these

systems have adequate crosscutting analysis capabilities.

One exception is KNIT. KNIT [18] is an interesting

composition tool for general purpose operating systems.

This system is addressing a number of crosscutting

concerns in composing operating systems. For example,

they consider linking, initialization, and a few other

dependencies. To date, it has not focused on real-time

and embedded system concerns.

A promising line of research is Aspects Oriented

Languages [10]. This work attempts to address complex

crosscutting dependencies at the source code level. As

mentioned above, we are extending this work to design

time where errors can be found early.

An excellent tool that matches our goals quite closely is

MetaH [27]. MetaH consists of a collection of tools for

the layout of the architecture of an embedded system and

for its reliability and real-time analysis. MetaH begins

with active tasks as components, assumes an underlying

real-time OS, and has some dependency checking. Their

work uses fixed priority scheduling. The MetaH work

was done prior to aspect oriented languages. In contrast

we elevate aspects to the central theme of VEST and

focus on dependency checks. We also provide more

general scheduling analysis support: including

automatically collecting the task set characteristics and

requirements from the design, matching the requirements

with assumptions of various scheduling analyses,

providing more than fixed priority scheduling, and

supporting access to a commercial real-time scheduling

tool.

10. Conclusion

When building embedded systems from components [3,

7, 20, 25], those components must interoperate, satisfy

various dependencies [5], and meet non-functional

requirements. The VEST toolkit can substantially

improve the development, implementation and

evaluation of these systems. The toolkit focuses on using

language independent notions of aspects to deal with

non-functional properties, and is geared to distributed

embedded system issues that include application domain

specific code, middleware, the OS, prescriptive aspects,

and the hardware platform. The VEST tool has been

implemented and used on three case studies, two of

which are described in this paper. The case studies (i)

qualitatively demonstrate the benefits of our tool and (ii)

include quantitative data that show a savings of over

50% in design and analysis time. Overall, a main

advantage of our tool is that it has the potential to

address the most difficult parts of component

composition, the hidden crosscutting dependencies

including overall, distributed real-time analysis. The

next step is to incorporate VEST into a top-to-bottom

requirements specification and design methodology.

This step is underway. Currently, a beta version of

VEST has been delivered to Boeing. The plans are to

make VEST (including a user’s manual) available by the

summer 2003.

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

Acknowledgments

We thank Dave Sharp and Mark Shulte of Boeing for

their help in understanding the case study and for their

comments and suggestions on the features found in

VEST. We also thank Akos Ledeczi and others at

Vanderbilt University for making GME available for this

research.

11. References

[1] Audsley, N. C. (1991) Optimal Priority Assignment

and Feasibility of Static Priority Tasks with Arbitrary

Start Times, Tech. Report YCS 164, University of

York, York, England.

[2] Bettati, R., (1994) End-to-End Scheduling to Meet

Deadlines in Distributed Systems, PhD Thesis,

Department of Computer Science, University of Illinois

at Urbana-Champaign.

[3] Booch G. (1987) Software Components with Ada:

Structures, Tools and Subsystems. Benjamin-

Cummings, Redwood City, CA.

[4] Gill, C., Levine, D. and Schmidt, D. (2000) The

Design and Performance of a Real-Time CORBA

Scheduling Service, Real-Time Systems, 20(2), Kluwer.

[5] Gray, J., Bapty, T., Neema, S., and Tuck, J. (2001),

Handling Crosscutting Constraints In Domain Specific

Modeling, CACM, Vol. 44, No. 10.

[6] Harrison T., Levine, D. and Schmidt, D. (1997), The

Design and Performance of a Real-time CORBA Event

Service, Proceedings of OOPSLA '97, ACM, Atlanta,

GA.

[7] Hatcliff, J., et. al. (2003) Cadena: An Integrated

Development, Analysis, and Verification Environment

for Component-based Systems, ICSE, to appear.

[8] Humphrey, M. and Stankovic, J., (1996) CAISARTS:

A Tool for Real-Time Scheduling Assistance, IEEE

Real-Time Technology and Applications Symposium.

[9] Kao, B., and Garcia-Molina, H., (1994) Subtask

Deadline Assignment for Complex Distributed Soft

Real-time Tasks, IEEE International Conference on

Distributed Computing Systems.

[10] Kiczales, G., Hilsdale, E., Hugunin , J., Kersten , M.,

Palm , J., and Griswold, W. (2001) Getting Started

With ASPECTJ, Communications of the ACM, 44(10).

[11] Klein, M., Ralya, T., Pollak, B., Obenza, R., Harbour,

M. G. (1993) A Practitioner's Handbook for Real-Time

Analysis – Guide to Rate Monotonic Analysis for Real-

Time Systems, Kluwer Academic Publishers.

[12] Ledeczi A., Maroti M., Bakay A., Karsai G., Garrett J.,

Thomason IV C., Nordstrom G., Sprinkle J., Volgyesi

P. (2001) The Generic Modeling Environment,

Workshop on Intelligent Signal Processing, Budapest,

Hungary.

[13] Microsoft Corporation and Digital Equipment

Corporation (1995) The Component Object Model

Specification. Redmond, Washington.

[14] Microsoft Corporation (1998) Distributed Component

Object Model Protocol, version 1.0. Redmond,

Washington.

[15] Object Management Group (1997) The Common

Object Request Broker: Architecture and Specification,

Revision 2.0, formal document 97-02-25

(http://www.omg.org).

[16] Palencia, J. and Gonzlez Harbour, M. (1998)

Schedulability Analysis for Tasks with Static and

Dynamic Offsets, Real-Time Systems Symposium.

[17] Rational Software Corporation, Model Driven

Development Using UML: Rational Rose

http://www.rational.com/media/products/rose/D185F_

Rose.pdf.

[18] Reid, A., M. Flatt, L. Stoller, J. Lepreau, and E. Eide.

(2000) Knit: Component Composition for Systems

Software. OSDI 2000, San Diego, Calif., pp. 347-360.

[19] Santarini, M, Cadence Says Platform Halves

Verification Time, EEdesign, Feb. 24, 2003.

[20] Short K. (1997) Component Based Development and

Object Modeling. Sterling Software

(http://www.cool.sterling.com).

[21] Siegel J. (1998), OMG Overview: Corba and OMA in

Enterprise Computing, CACM, Vol. 41, No. 10.

[22] Schmidt, D., Levine, D., and Mungee, S. (1998) The

Design of the TAO Real-Time Object Request Broker,

Computer Communications, Special Issue on Building

Quality of Service into Distributed Systems, 21(4).

[23] Sharp, D. (1998) Reducing Avionics Software Cost

Through Component Based Product Line Development,

Software Technology Conference.

[24] Stankovic, J., Zhu, R., Poornalingham, R., Lu, C., Yu,

Z., Humphrey, M., and Ellis, B., VEST: An Aspect-

Based Real-Time Composition Tool, University of

Virginia TR-CS-2003-07, March 2003.

[25] Szyperski C. (1998) Component Software Beyond

Object-Oriented Programming. Addison-Wesley, ACM

Press, New York.

[26] Tindell, K. (1994) Adding Time-Offsets to

Schedulability Analysis, Technical Report YCS 221,

Dept. of Computer Science, University of York.

[27] Vestal, S. (1997) MetaH Support for Real-Time Multi-

Processor Avionics, Real-Time Systems Symposium.

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

